48 research outputs found

    On the efficiency of a dedicated LMA for multicast traffic distribution in PMIPv6 domains

    Full text link
    IP multicast allows the efficient support of group communication services by reducing the number of IP flows needed for such communication. The increasing generalization in the use of multicast has also triggered the need for supporting IP multicast in mobile environments. Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management solution, where the functionality to support the terminal movement resides in the network. Recently, a baseline solution has been adopted for multicast support in PMIPv6. Such base solution has inefficiencies in multicast routing because it may require multiple copies of a single stream to be received by the same access gateway. Nevertheless, there is an alternative solution to support multicast in PMIPv6 that avoids this issue. This paper evaluates by simulation the scalability of both solutions under realistic conditions, and provides an analysis of the sensitivity of the two proposals against a number of parameters

    OKpi: All-KPI Network Slicing Through Efficient Resource Allocation

    Full text link
    Networks can now process data as well as transporting it; it follows that they can support multiple services, each requiring different key performance indicators (KPIs). Because of the former, it is critical to efficiently allocate network and computing resources to provide the required services, and, because of the latter, such decisions must jointly consider all KPIs targeted by a service. Accounting for newly introduced KPIs (e.g., availability and reliability) requires tailored models and solution strategies, and has been conspicuously neglected by existing works, which are instead built around traditional metrics like throughput and latency. We fill this gap by presenting a novel methodology and resource allocation scheme, named OKpi, which enables high-quality selection of radio points of access as well as VNF (Virtual Network Function) placement and data routing, with polynomial computational complexity. OKpi accounts for all relevant KPIs required by each service, and for any available resource from the fog to the cloud. We prove several important properties of OKpi and evaluate its performance in two real-world scenarios, finding it to closely match the optimum

    Inter-Slice Mobility Management in 5G: Motivations, Standard Principles, Challenges and Research Directions

    Get PDF
    Mobility management in a sliced 5G network introduces new and complex challenges. In a network-sliced environment, user mobility has to be managed not only among different base stations or access technologies, but also among different slices. This motivates the need for new mobility management solutions, which, by convention are required to be standards-compliant. This article, presented as a tutorial, focuses on the problem of inter-slice mobility from the perspective of 3GPP standards for 5G. A detailed overview of the relevant 3GPP standard principles is provided. Accordingly, the key technical gaps, challenges and the corresponding research directions are identified towards achieving seamless inter-slice mobility within the current 3GPP network slicing framework

    COTORRA: COntext-aware Testbed fOR Robotic Applications

    Get PDF
    Edge & Fog computing have received considerable attention as promising candidates for the evolution of robotic systems. In this letter, we propose COTORRA, an Edge & Fog driven robotic testbed that combines context information with robot sensor data to validate innovative concepts for robotic systems prior to being applied in a production environment. In lab/university, we established COTORRA as an easy applicable and modular testbed on top of heterogeneous network infrastructure. COTORRA is open for pluggable robotic applications. To verify its feasibility and assess its performance, we ran set of experiments that show how autonomous navigation applications can achieve target latencies bellow 15ms or perform an inter-domain (DLT) federation within 19 seconds.Comment: 4 pages, 4 figures, submitted to IEEE Communications Letter

    On providing mobility management in WOBANs: Integration with PMIPv6 and MIH

    Get PDF
    The Wireless-Optical Broadband Access Network (WOBAN) is a promising access architecture that combines the high performance of optical networks with the ubiquity and convenience of wireless technologies. This article proposes a network-based mobility framework that is specially tailored for WOBANs. The proposed architecture is based on Proxy Mobile IPv6 and IEEE 802.21 mobility management protocols, but it also defines a number of optimizations that enable the seamless handover of mobile nodes. In particular, the hierarchical architecture together with the broadcast-and-select nature of the optical part of the WOBAN are leveraged to: optimize the mobility of users with respect to the overall network resources, both at the wireless access and optical distribution parts, remove the overhead of IP-in-IP tunneling between the PMIPv6 entities, and perform an efficient bicasting during the handover process to minimize packet loss.The authors would like to acknowledge the support of the EU-funded MEDIEVAL (grant FP7-ICT-2009-5/258053), the CAM-funded Medianet project (under code S-2009/TIC-1468) and the MICINN research grant TIN2010-20136-C03.European Community's Seventh Framework ProgramPublicad

    Beyond Multi-access Edge Computing: Essentials to realize a Mobile, Constrained Edge

    Get PDF
    ETSI Multi-access Edge computing (MEC) main purpose is to improve latency and bandwidth consumption by keeping local traffic local while providing computing resources near the end-user. Despite its clear benefits, the next-generation of hyper-distributed applications (e.g., edge robotics, augmented environments, or smart agriculture) will exacerbate latency and bandwidth requirements, posing significant challenges to today's MEC deployments. In this work, we leverage on the current study item ETSI GR MEC 036, introducing a lightweight constrained version of a MEC platform that can be deployed in a mobile end terminal or in its closed locality. This work presents design options for cMEC, and how it can untangle the aforementioned gaps while being architectural compatible with a full-fledged MEC framework. Finally, key use cases and still open challenges are discussed, including recommendations to extend the current MEC standard towards constrained environments

    Using RAW as Control Plane for Wireless Deterministic Networks: Challenges Ahead

    Get PDF
    This paper provides extensive analysis of RAW (Reliable and Available Wireless) enhancements and solutions needed to manage industrial environments more effectively. Starting from the description of the industrial use case, an analysis of gaps and potential new extensions is performed. Namely, the need to (i) support multi-domain operation, at both technology and administrative levels; (ii) integrate RAW with edge architectures; and, (iii) the support for mobility support in RAW networks, are analysed. The identified gaps are indeed not yet tackled by the relevant standardisation development organisations, mainly the Internet Engineering Task Force, and are thus object of our future wor

    Field evaluation of a 4G “True-IP” network

    Get PDF
    This article presents field evaluation results of an IP-based architecture for heterogeneous environments, covering UMTS- like TD-CDMA (Time Division-Code Division Multiple Access) wireless access technology, wireless and wired LANs, that has been developed under the aegis of the IST Moby Dick project. The architecture treats all transmission capabilities as basic physical and data-link layers, and attempts to replace all higher-level tasks by IP-based strategies. The Moby Dick architecture incorporates mobile-IPv6, fast handover, AAA-control (Authentication, Authorization, Accounting), Charging and Quality of Service. The architecture allows for an optimized control on the radio link layer resources. The Moby Dick architecture has been implemented and was evaluated on field trials with multiple services
    corecore